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Abstract. We have enumerated exactly the square lattice site animals with vertex degree less 
than or equal to three and with up to fourteen sites in the cluster. Using series analysis 
techniques estimates have been made of the location, exponent and amplitude of the 
principal singularity in the animal generating function for maximum vertex degree t' = 2 , 3  
and 4. We have shown rigorously that the dominant singularity in the generating function 
must have a different exponent for U = 2 than for U = 3 and the numerical resultssuggest that 
the generating function diverges with an exponent of $ for v = 2 but logarithmically for borh 
v = 3 and v = 4 .  

1. Introduction 

One of the areas of lattice statistics which is receiving considerable attention is the 
percolation problem (for a review, see Essam 1972). In  this paper we consider a 
particular aspect of this problem, the number of lattice animals, i.e. the number of 
connected clusters of n sites. Several important rigorous results are available for this 
problem; for instance Klarner (1967) showed that the animals are super-multiplicative 
which implies that, if a, is the number of site animals with n sites, 

sup n - l  In a, = lim n-' In a,  3 In A 
n>O n+m 

and several workers have derived rigorous bounds for A (e.g. Klarner and Rivest 1973, 
Whittington and Gaunt 1978). 

To obtain more detailed information on the asymptotic behaviour of a,, the lattice 
animals have been enumerated exactly for small n and, assuming an asymptotic form 
such as 

a ,  - n-TA 

estimates have been made of T and A (Sykes and Glen 1976, Sykes et a1 1976, Gaunt et 
a1 1976, Guttmann and Gaunt 1978). 

In the usual percolation problems, percolation can occur from a site to any 
neighbouring lattice site, with given probability which is independent of the condition of 
other neighbouring sites. A generalisation of this problem is to consider restricted 
percolation in which the valence (or vertex degree) of any site cannot exceed some 
prescribed maximum value. For instance, for the square lattice, restricting the valence 
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to a maximum value of three would rule out all clusters with a vertex of degree four. One 
reason for our interest in this generalisation is that it allows contact to be made with the 
excluded volume problem. If the maximum allowed valence (U) is set equal to two, the 
resulting clusters are the neighbour-avoiding walks and neighbour-avoiding polygons. 
(Notice that they are neighbour-avoiding because site animals are strong embeddings, 
i.e. section graphs of the lattice. Bond animals would correspond to self-avoiding walks 
and self-avoiding polygons.) 

In  this paper we shall consider the square lattice site animals with U = 2 ,3  and 4, and 
we write the number of site animals with maximum U, having n sites in the cluster as 
a , ( u ) .  The values of ~ “ ( 4 )  up to n = 19 are available in Sykes and Glen (1976), and 
Domb, Gillis and Wi1mei.s (1963, unpublished) and Hioe (1967) have enumerated the 
neighbour-avoiding walks on the square lattice with n < 19, which form the dominant 
contribution to ~ “ ( 2 ) .  For an(3)  we have carried out exact enumerations for n s 14. In 
§ 2 we make some comments on the super-multiplicative property and its consequences 
while § 3 contains our analysis of the exact enumeration data. 

2. Asymptotic behaviour of site animals with restricted valence 

To prove the existence of the connective constant A (3) (defined below) for the square 
lattice with restricted vzlence 3, the only point of interest is whether the ‘usual’ joining 
operation used in deriving the super-multiplicative property will violate the restricted 
valence condition. 

We consider a particular cluster with m sites and define the top (bottom) site in the 
cluster as the left-most (right-most) site in  the top (bottom) row of sites. Let the 
coordinates of these sites be (xT, YT) and (XB, y ~ )  for one particular m-animal and 
(xk, y k )  and (xf3, yf3) for a particular n-animal. Now translate so that xk = x B  and 
y 4  = y B  - 1 and add a bond joining the bottom site of one to the top site of the other 
animal. The resulting graph is clearly a site animal with (m + n)  sites. Moreover, in the 
original m-animal the bottom site had a valence of not more than 2. (If the valence were 
3 or 4 there must have been a site with coordinates (XB, Y B -  1) or (XB+ 1, y e ) ,  or both, 
which violates the definition of (XB, YB) as the bottom site.) A similar argument applies 
for the top site of the n-animal. Consequently the maximum valence of any site in the 
(n + m)-animal is 3. Hence 

and, by the usual arguments 

O<sup n-l In an (3 )=  n+w lim n-l In an(3)=ln  A(3)<cO. (2.2) 
n > O  

Using aI4(3) = 5 512 502 (see table 1) gives A(3) 2 3.0305 . . . . An improved lower 
bound, namely 

lnA(3)2m-’ln (2am(3)) (2.3) 

may be obtained using an argument exactly analogous to that employed by Whittington 
and Gaunt (1978). This yields A(3)23.1843 . . . which is still well below our best 
numerical estimate of 3.950* 0.005 (see table 3) but greater than 3 which is a rigorous 
upper bound on A (2). 
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Notice that the construction leading to (2.1) fails for v = 2. In this case, the number 

(2.4) 

where [nIc is the number of n-edge strongly embedded simple chains, i.e. the number of 
undirected neighbour-avoiding n-step walks, and [nI0 is the number of (undirected, 
unrooted) n-edge strongly embedded polygons. I t  is trivial to prove that 

of site animals is given by 

an(2)  = [n - lIc+[n10 

so that (2.4) is dominated by the walk term. If we assume that we can write 

~ ~ ( v ) - n - " " ' r \ ( v ) "  (2.6) 

then the above arguments show that 7(2)<0 while 7 ( 3 ) > 0 .  Hence a change in the 
exponent must occur from v = 2 to v = 3. 

A corresponding argument for the d-dimensional hypercubic lattice is less 
conclusive. Extending the definition of top and bottom sites in the natural way leads to 
sites having valence not greater than d so a n ( v )  is super-multiplicative at least for 
v b d + 1, i.e. a change in exponent must occur somewhere between v = 2 and v = d + 1. 

3. Series analysis 

The values obtained by us for a n ( 3 )  are given in table 1 together with the corresponding 
results for v = 2 and 4. The values for v = 4 are reproduced from Sykes and Glen (1976) 
while the values for v = 2 have been obtained from data for neighbour-avoiding walks 
(Domb, Gillis and Wilmers, private communication, Hioe 1967). 

Table 1. Numbers of clusters with n sites, having maximum valences 2, 3 and 4, strongly 
embeddable in the square lattice. 

n a,@) U"(3) G(4)  

1 1 1 1 
2 2 2 2 
3 6 6 6 
4 15 19 19 
5 34 62 63 
6 82 208 216 
7 198 712 760 
8 47 1 2 481 2 725 
9 1122 8 164 9 910 

10 2 664 31 308 36 446 
11 6 334 112 872 135 268 
12 14 979 410 046 505 861 
13 35 506 1 499 290 1903 890 
14 83 770 5 512 502 7 204 874 
15 198 086 27 394 666 
16 466 468 104 592 937 
17 1100818 400 795 844 
18 2 588 302 1540 820 542 
19 6 097 830 5 940 738 676 
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The series analysis followed standard lines (Gaunt and Guttmann 1974) and we give 
only a brief account here. For U = 2, there are good theoretical reasons (Watson 1970) 
for believing that the exponent for neighbour-avoiding walks will be the same as for 
self-avoiding walks, and hence we expect ~ ( 2 )  = -4. The data reported here are in  
accord with this value, though with fairly large uncertainty. Assuming this value for the 
exponent, a Pad6 analysis of the data suggests A (2) = 2.316* 0.002. This is in precise 
agreement with the value reported by Hioe (1 967). There is strong evidence of a second 
singularity for U = 2 on the circle of convergence of the generating function 

G ( x ,  U ) =  1 +  a , ( u ) x n  
? I 3 1  

(3.1) 

at x = - 1 / A  (2), as is also found for self-avoiding walks (Watts 1975, Guttmann and 
Whittington 1978) and for neighbour-avoiding walks (Gaunt, unpublished, Hioe 
1967). From (2.6) it follows that, close to x = l / A ( u ) ,  

G(x, ~)-[A/(1-7)][(1 13 (3.2) 

and for U = 2 Pad6 and ratio methods indicate A = 0.305 f 0.004. 
For U = 3 we present the results of a ratio analysis in table 2. Defining A, = a,/a,-l 

we form the linear extrapolants A k = nA, - ( n  - l ) A n - l  which suggest A > 3.94. To 
estimate T we form the sequence n [ l -  ( A J A k ) ]  which appears to be converging to 
T = 1. Letting T go to unity in (3.2) we obtain 

G(x, U )  - - A  In( 1 - A x )  (3.3) 

Table 2. Ratio analysis for v = 3. 

n A;  = nh, - ( n  - l ) A n - ~  n[l - ( & / A h ) ]  nAn/(n - 1) 

7 3,832506 0,747815 3.993590 
8 3.9 14866 0.879347 3.982343 
9 3.915615 0.880708 3.974002 

10 3.931395 0.91 3297 3.969268 
11 3.933926 0.91 9144 3.965734 
12 3.936749 0,926373 3.963099 
13 3.939042 0.932818 3.96 1094 
14 3.941253 0.939589 3.959568 

so that the singularity is logarithmic. Hence we form the sequence nA,/(n - 1) which 
suggestSA < 3.96. As our best estimate we take A (3) = 3.950k 0.005. These results for 
T and A are completely consistent with a Pad6 analysis. From Pad6 and ratio analyses 
we estimate the amplitude A in (3.3) to be 0.355 * 0*010. Unlike the U = 2 case there is 
no sign of odd-even alternation in the ratio estimates and the poles of the Dlog Pad6 
approximants show no evidence of a singularity at -l/A(3). The closest competing 
singularities appear to be a conjugate pair two to three times as far from the origin as the 
dominant physical singularity. 

The series for U = 4 has already been discussed several times in the literature (e.g. 
Sykes and Glen 1976, Guttmann and Gaunt 1978). We summarise our final estimates 
in table 3 and merely comment that they are in excellent accord with previous work. 
Again the singularity appears to be logarithmic and there are no competing singularities 
close to the circle of convergence. 
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Table 3. Estimates of critical parameters. 

v = 2  v = 3  v = 4  

do) -$*0.04 1 * 0.03 1 *0.02 
A ( U )  2.316 * 0.002 3.950*0.005 4.065 izO.005 
A(v) 0.305*0.004 0.355 * 0.010 0.306 * 0.006 

4. Discussion 

For the square lattice site animals we have shown that the connective constant (cell 
growth parameter) exists for restricted valence 3 and, assuming the plausible form (2.6) 
for the n-dependence of a , (v ) ,  we have shown rigorously that the exponent 7 must 
change on going from U = 2 to U = 3. The numerical results presented here suggest that 
7 is unity for U = 3, as it is for v = 4. However, not unexpectedly, A (U) changes smoothly 
as U is varied from 2 to 4. 
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